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Chapter 1

The Euclidean space Rn

In Analysis 1 you have learned the fundamental concepts of differential and integral
calculus of real-valued functions in one real variable, known as Single Variable Calculus.
However, real-life phenomena often depend on a multitude of factors and it requires
more than just one variable to properly model such situations. This leads to the study
of the theory of differentiation and integration of functions in several variables, called
Multivariable Calculus. The mathematical stage on which the study of functions in
several variables unfolds is the n-dimensional Euclidean space Rn.

Before defining the n-dimensional Euclidean space and its intrinsic topology, let us
recall some basic notions commonly used in analysis and calculus.

N the natural numbers {1, 2, 3, 4, . . .},
Z the integers, i.e., signed whole numbers {. . . ,−2,−1, 0, 1, 2, . . .},
Q the rational numbers a

b
with a ∈ Z and b ∈ N,

R the real numbers,
C the complex numbers,

An open interval is an interval that does not include its boundary points and is
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6 CHAPTER 1. THE EUCLIDEAN SPACE Rn

denoted by parentheses. The open intervals are thus one of the forms

(a, b) = {x ∈ R : a < x < b},
(−∞, b) = {x ∈ R : x < b},
(a,+∞) = {x ∈ R : a < x},

(−∞,+∞) = R,

where a and b are real numbers with a ⩽ b. The interval (a, a) = ∅ is the empty set,
a degenerate interval. Open intervals are open sets in the topology of R.

A closed interval is an interval that includes all its boundary points and is denoted
by square brackets. Closed intervals take the form

[a, b] = {x ∈ R : a ⩽ x ⩽ b},
(−∞, b] = {x ∈ R : x ⩽ b},
[a,+∞) = {x ∈ R : a ⩽ x},

(−∞,+∞) = R,

Closed intervals are closed sets in the topology of R. Note that the interval R =
(−∞,+∞) is both open and closed at the same time.

A half-open interval is a finite interval that includes one endpoint but not the other.
It can be left-open or right-open, depending on which endpoint is excluded:

(a, b] = {x ∈ R : a < x ⩽ b},
[a, b) = {x ∈ R : a ⩽ x < b},

Note that half-open intervals are neither open nor closed sets in the topology of R.
Intervals of the form [a, b], [a, b), (a, b], (a, b) for a, b ∈ R with a ⩽ b are called

bounded intervals, whereas intervals like (−∞, b], (−∞, b), [a,+∞), and (a,+∞) are
unbounded intervals.

1.1 The vector space Rn

Given a positive integer n, the set Rn is defined as the set of all ordered n-tuples
(x1, . . . , xn) of real numbers. It is called the standard Euclidean space of dimension n,
or simply the n-dimensional Euclidean space.

We can represent an element of Rn either as an n-tuple, which is the same as a row
vector with n entries,

x = (x1, . . . , xn)

or as a column vector with n entries

x =


x1
...
xn

 .
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Both representations are common and widely used in the literature. We will generally
use column vectors to denote elements of Rn in calculations, and row vectors to denote
elements of Rn as input parameters of functions defined on Rn.

There are also different ways in which elements in Rn are denoted, the three most
common are

x, x, and x⃗.

In this text, we will predominantly use x for elements in R and x for elements in Rn

for n ⩾ 2.
If n = 1 then R1 = R corresponds to the real line.

0 x

If n = 2 then R2 corresponds to the 2-dimensional plane. A point in R2 is usually
written as either (x, y) or x = (x1, x2)⊤.

•
x =

(
x1
x2

)

x2

x1

If n = 3 then R3 corresponds to the 3-dimensional space. A point in R3 is usually
written as eitehr (x, y, z) or x = (x1, x2, x3)⊤.

•
x3

x2

x1

x =

x1
x2
x3


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The set Rn is an n-dimensional inner product vector space over the real numbers.
This means it is closed under addition, scalar multiplication, and endowed with an
inner product called the scalar product. The addition on Rn is defined coordinate wise
by

x + y =


x1
...
xn

+


y1
...
yn

 =


x1 + y1

...
xn + yn

 .
The multiplication of an element x ∈ Rn by a scalar λ ∈ R is defined as

λx = λ


x1
...
xn

 =


λx1
...

λxn

 .
The way in which addition and multiplication on Rn interact is described by the
distributive law, which asserts that

λ(x + y) = λx + λy. (Distributive Law)

The vector space Rn is also equipped with a scalar product ⟨., .⟩ : Rn × Rn → R
defined as

⟨x,y⟩ =
n∑

k=1
xkyk. (1.1)

The scalar product satisfies the three following properties:
1. Positive-definiteness: ⟨x,x⟩ ⩾ 0 for all x ∈ Rn, with equality only for x = 0.
2. Symmetry: ⟨x,y⟩ = ⟨y,x⟩ for all x,y ∈ Rn.
3. Bilinearity: ⟨αx + βy, z⟩ = α⟨x, z⟩ + β⟨y, z⟩ for all x,y, z ∈ Rn and α, β ∈ R.
In linear algebra, a vector x is also an n × 1 matrix. Its transpose, written x⊤ =

(x1, . . . , xn), is therefore a 1 × n matrix, and we can interpret the scalar product of
two vectors x,y as the matrix product of x⊤ and y:

⟨x,y⟩ = x⊤ · y = (x1, . . . , xn) ·


y1
...
yn

 .

1.2 The Euclidean distance on Rn

To be able to extend the analytical methods presented in Analysis 1 to the space Rn,
it is important to endow Rn with a topological structure. On R we have used the
absolute value to define a distance d(x, y) = |x − y|, which was then used to define
notions such as convergence and continuity in R. We seek to generalize the absolute
value and the distance to the space Rn. To do so, we will introduce the concepts of a
norm and a metric.



1.2. THE EUCLIDEAN DISTANCE ON Rn 9

Definition 1.1 (The Euclidean norm on Rn). The Euclidean norm on Rn is the
function ∥.∥2 : Rn → R defined by

∥x∥2 =
√

⟨x,x⟩ =
(

n∑
k=1

x2
k

) 1
2

. (1.2)

It measures the distance of the point x to the origin 0 = (0, . . . , 0).

Observe that in one dimension, the Euclidean norm of a real number is the same
as the absolute value of that number. In general, the Euclidean norm satisfies the
following properties:

1. Non-negativity: ∥x∥2 ⩾ 0 for all x ∈ Rn, with equality if and only if x = 0.
2. Homogeneity: ∥λ · x∥2 = |λ| · ∥x∥2 for all λ ∈ R and x ∈ Rn.
3. Triangle inequality: ∥x + y∥2 ⩽ ∥x∥2 + ∥y∥2 for all x,y ∈ Rn.

One of the most important properties of the scalar product is the Cauchy-Schwarz
inequality, which says that

|⟨x,y⟩| ⩽ ∥x∥2 ∥y∥2 (Cauchy-Schwarz)

The Euclidean norm ∥x∥2 also corresponds to the length of a vector x. The scalar
product ⟨x,y⟩ measures the angle between the two vectors x and y: if we designate θ
as the angle between x and y, then

⟨x,y⟩ = ∥x∥2∥y∥2 cos θ. (Angle Formula)

In particular if x and y are orthogonal vectors, i.e., θ = ±π/2, then ⟨x,y⟩ = 0. As a
consequence, we obtain the famous Pythagorean theorem, which says that if x and y
are orthogonal then

∥x + y∥2
2 = ∥x∥2

2 + ∥y∥2
2. (Pythagoras)

With the help of the Euclidean norm we can define a metric on Rn called the
Euclidean distance.

Definition 1.2 (The Euclidean distance on Rn). The Euclidean distance on Rn is the
function d(., .) : Rn × Rn → [0,∞) given by

d(x,y) := ∥x − y∥2 =
√

(x1 − y1)2 + . . .+ (xn − yn)2. (1.3)

The Euclidean distance captures the natural distance between two points in Rn. It
satisfies the following three properties:

1. Non-negativity: d(x,y) ⩾ 0 for all x,y ∈ Rn, with equality only when x = y.
2. Symmetry: d(x,y) = d(y,x).
3. Triangle inequality: d(x,y) ⩽ d(x, z) + d(y, z).
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1.3 The topology on Rn

The Euclidean distance d(x,y) induces a topology on Rn which underpins all analytical
considerations on Rn. In particular, notions such as continuity, convergence, differ-
entiablility and integrability are all defined in terms of this topology. The building
blocks of the topology on Rn are the so-called open balls.

Definition 1.3 (Open Ball). Let a ∈ Rn and r > 0. The set

B(a, r) = {x ∈ Rn : d(x, a) < r}

is called the open ball of radius r centered at a.

Open balls are the mathematical conceptualization of “nearness” and an important
use of open balls is to topologically distinguish distinct points: if x,y ∈ Rn and x ̸= y
then we can find a sufficiently small open ball centered at x and another sufficiently
small open ball centered at y such that these two balls don’t touch.

Open balls are instances of open sets. An open set is a set with the property that
if x is a point in the set then all points that are sufficiently near to x also belong to
the set. The mathematically precise definition is as follows:

Definition 1.4 (Open set). A subset U ⊆ Rn is open if for any point x ∈ U there
exists ε > 0 such that the open ball B(x, ε) is contained in U .

The empty set ∅ and the space Rn are open. Also, as was already mentioned, any
open ball B(a, r) is an open set.

Example 1.1 (Open Sets in Rn).
1. If a < b are real numbers then the interval

(a, b) = {x ∈ R : a < x < b}

is an open set. Indeed, if x ∈ (a, b), simply take r = min{x− a, b− x}. Both these
numbers are strictly positive, since a < x < b, and so is their minimum. Then the
“1-dimensional ball” B(x, r) = {y ∈ R : |x − y| < r} is a subset of (a, b). This
proves that (a, b) is an open set.

2. The infinite intervals (a,∞) and (−∞, b) are also open but the intervals

(a, b] = {x ∈ R : a < x ⩽ b} and [a, b] = {x ∈ R : a ⩽ x ⩽ b}

are not open sets.
3. The rectangle

(a, b) × (c, d) = {(x, y) ∈ R2 : a < x < b, c < y < d}

is an open set.

The antithetical notion to an open set is that of a closed set.

Definition 1.5 (Closed set). A subset C ⊆ Rn is closed if its complement Rn\C is
open.
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The empty set ∅ and the space Rn are the only sets that are both closed and open
at the same time. Intuitively, one should think of a closed set as a set that has no
“punctures” or “missing endpoints”, i.e., it includes all limiting values of points. For
instance, the punctured plane R2\{(0, 0)} is not a closed set.

An example of a closed set is the closed ball.

Definition 1.6 (Closed Ball). Let a ∈ Rn and r > 0. The set

B(a, r) = {x ∈ Rn : d(x, a) ⩽ r}

is called the closed ball of radius r centered at a. It is a closed set.

Example 1.2 (Closed Sets in Rn).
1. The closed interval

[a, b] = {x ∈ R : a ⩽ x ⩽ b}

is a closed set, because its complement R\[a, b] = (−∞, a) ∪ (b,∞) is an open set.
2. Infinite intervals with closed boundary [a,∞) and (−∞, b] are closed sets.
3. Halfopen intervals such as [a, b) or (a, b] are neither closed nor open sets.
4. Any set consisting of only finitely many points is a closed set.

The following two propositions describe how open and closed sets behave under
basic set manipulations such as unions, intersections, and set differences.

Proposition 1.1.
• If U ⊆ Rn is open and C ⊆ Rn is closed then U\C is open.
• If C ⊆ Rn is closed and U ⊆ Rn is open then C\U is closed.

Proposition 1.2.
• If U1, . . . , Uk ⊆ Rn are open then U1 ∪ . . . ∪ Uk and U1 ∩ . . . ∩ Uk are open.
• If C1, . . . , Ck ⊆ Rn are closed then C1 ∪ . . . ∪ Ck and C1 ∩ . . . ∩ Ck are closed.

To better grasp the difference between open sets and closed sets, we introduce the
concept of interior points, exterior points, and boundary points.

Definition 1.7 (Interior, Exterior, Boundary Points). Let S be a subset of Rn and x
a point in Rn.

(i) We call x an interior point of S if there exists r > 0 such that the ball B(x, r)
is contained in S.

(ii) We call x an exterior point of S if there exists r > 0 such that the ball B(x, r)
has empty intersection with S.

(iii) We call x a boundary point of S if it is neither an interior point nor an exterior
point for S. Equivalently, x is a boundary point of S if for every r > 0 the ball
B(x, r) has non-empty intersection with S without being entirely contained in
S.

Note that every point is either interior, exterior or on the boundary in relationship
to a set S.
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Figure 1.1: Illustration of the difference between interior, exterior and boundary points
of a set S.

Definition 1.8 (Interior). The set of all interior points of a set S is called the interior
of S and it is denoted by S̊.

Definition 1.9 (Boundary). The set of all boundary points of a set S is called the
boundary of S and we use ∂S to denote it.

Definition 1.10 (Closure). The closure of S, denoted by S, is the set of points x ∈ Rn

with the property that for all r > 0 one has

B(x, r) ∩ S ̸= ∅.

Equivalently, the closure of S is the union of all its interior points and all its boundary
points.

Figure 1.2: The interior, closure and boundary sets of a set S.

Clearly, we have the set inclusions S̊ ⊆ S ⊆ S. To summarize, the closure of S
is S plus its boundary, its interior is S minus its boundary, and the boundary is the
closure minus the interior:

S̊ = S\∂S S = S ∪ ∂S, and ∂S = S \S̊.

Proposition 1.3. Let S ⊆ Rn. The interior S̊ is the largest open set contained inside
of S. The closure S is the smallest closed set that has S as a subset.
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Corollary 1.1. A set is open if and only if it is equal to its interior. On the other
hand, a set is closed if and only if it is equal to its closure, which is the same as saying
that it contains all its boundary points.

Example 1.3 (Closure, Interior, Boundary).
1. The sets (0, 1), [0, 1], [0, 1), and (0, 1] all have the same closure, interior, and bound-

ary: the closure is [0, 1], the interior is (0, 1), and the boundary consists of the two
points 0 and 1.

2. The sets

{(x, y) ∈ R2 : x2 + y2 < 1} and {(x, y) ∈ R2 : x2 + y2 ⩽ 1}

both have the same closure, interior, and boundary: the closure is the disc of
equation x2 + y2 ⩽ 1, the interior is the disc of equation x2 + y2 < 1, and the
boundary is the circle of equation x2 + y2 = 1.

3. The set

U = {(x, y) ∈ R2 : |y| < x2}

describes the region between two parabolas touching at the origin, shown in Fig. 1.3.
The set is open, so U = Ů . The closure of U is given by

U = {(x, y) ∈ R2 : |y| ⩽ x2}.

In particular, the closure contains the point (0, 0).

Figure 1.3: The origin belongs to the closure of the shaded region.

4. The unit ball is open in Rn and is defined by

B1 = B(0, 1) = {x ∈ Rn : ∥x∥2 < 1}

Its boundary is the sphere ∂B1 = {x ∈ Rn : ∥x∥2 = 1}.
5. Let f : R → R be a continuous function. The set

Gf = {(x, f(x)) ∈ R2 : x ∈ R}
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is known as the graph of f and represents a curve in R2. We have G̊f = ∅. Therefore
Gf = ∂Gf . The closed graph theorem says that graph G̊f is a closed set in R2 if f
is a continuous function.

6. Let B = {x ∈ R2 : ∥x∥2 < 1} and I = [0, 5]. The set S defined by

S = B × I =
{
x ∈ R3 : x2

1 + x2
2 < 1 and 0 ⩽ x3 ⩽ 5

}
is a cylinder. The set S is neither closed nor open. The boundary of S is given by

∂S = ∂B × I︸ ︷︷ ︸
E1

∪ B × ∂I︸ ︷︷ ︸
E2

,

where

E1 =
{
x ∈ R3 : x2

1 + x2
2 = 1 and 0 ⩽ x3 ⩽ 5

}
,

E2 =
{
x ∈ R3 : x2

1 + x2
2 < 1 and x3 ∈ {0, 5}

}
.

Definition 1.11 (Neighborhood of a point in Rn). Let x ∈ Rn and U ⊆ Rn. If x is
an interior point of U then U is called a neighborhood of x.

1.4 Sequences in Rn

Limits of sequences and limits of functions are fundamental notions in calculus, as you
already have seen in Analysis 1. Let us extend these principles to higher dimensions.
We write N = {1, 2, 3, . . .} for the set of natural numbers.

Definition 1.12 (Sequences in Rn). A sequence of elements of Rn is a function k 7→ xk

that associates to every natural number k ∈ N an element xk ∈ Rn. We write (xk)k∈N
to denote a sequence in Rn.

Although (xk)k∈N is by definition a sequence of n-tuples, we can also think of it as
an n-tuple of sequences by considering each coordinate as an individual sequence,

(xk)k∈N =


(x1,k)k∈N

...
(xn,k)k∈N

 .
Definition 1.13 (Convergent sequence). A sequence (xk)k∈N of points in Rn converges
to a point x ∈ Rn if for every ε > 0 there exists N > 1 such that when k ⩾ N , then
d (xk,x) < ε. In this case we call x the limit of (xk)k∈N and write

lim
k→+∞

xk = x.

Note that not every sequence has a limit, but if a sequence does then this limit is
unique. Sequences that possess a limit are called convergent, whereas sequences that
don’t possess one are called divergent.

It follows from Definition 1.13 that a sequence (xk)k∈N converges to x if and only
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if the sequence of distances d (xk,x) converges to 0, i.e.,

lim
k→+∞

xk = x ⇐⇒ lim
k→+∞

d (xk,x) = 0.

Convergence is also observed coordinate wise: A sequence (xk)k∈N converges to x if
and only if each coordinate of (xk)k∈N converges to the respective coordinate of x.
More precisely, if

(xk)k∈N =


(x1,k)k∈N

...
(xn,k)k∈N

 and x =


x1
...
xn


then

lim
k→+∞

xk = x ⇐⇒ lim
k→+∞

xi,k = xi for all i = 1, . . . , n.

Example 1.4 (Convergent and divergent sequences in Rn).
1. The sequence (xk)k∈N given by

xk =

 e−k

k
k+1

1√
k2−k−k


converges as k → +∞ to the limit

x =

 0
1

−2

 ,
because limk→+∞ e−k = 0, limk→+∞

k
k+1 = 1, and limk→+∞

1√
k2−k−k

= −2.
2. The sequence (xk)k∈N given by

xk =
(

0
1−(−1)k

2

)

diverges because it diverges in the second coordinate.

The following properties describe the arithmetic operations of sequences in the n-
dimensional Euclidean space and tell us that limits cooperate nicely with the vector
space structure of Rn.
Properties of limits of sequences. Let (xk)k∈N and (yk)k∈N be sequences in Rn

and let (λk)k∈N be a sequence in R.
1. Addition of sequences: If (xk)k∈N and (yk)k∈N both converge then so does

(xk + yk)k∈N and

lim
k→+∞

xk + yk = lim
k→+∞

xk + lim
k→+∞

yk.

2. Multiplication of sequences: If (xk)k∈N and (λk)k∈N both converge then so
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does (λkxk)k∈N and

lim
k→+∞

λkxk =
(

lim
k→+∞

λk

)
·
(

lim
k→+∞

xk

)
.

3. Inner product of sequences: If (xk)k∈N and (yk)k∈N both converge then so
does (⟨xk, yk⟩)k∈N and

lim
k→+∞

⟨xk, yk⟩ =
〈

lim
k→+∞

xk, lim
k→+∞

yk

〉
.

Definition 1.14 (Cauchy sequences). A sequence (xk)k∈N is a Cauchy sequence if for
every ε > 0 there exists N > 1 such that k, l ⩾ N implies d (xk,xl) < ε.

Theorem 1.1. Every convergent sequence (xk)k∈N is a Cauchy sequence and every
Cauchy sequence is convergent.

Proposition 1.4. Let S ⊆ Rn be a non-empty set and suppose x ∈ ∂S is a boundary
point of S. Then there exists a sequence of elements in S̊, x1,x2,x3, . . . ∈ S̊, such that

lim
k→+∞

xk = x.

The following example provides an illustration of the content of Proposition 1.4.

Example 1.5. Consider the open ball of radius 5 centered at the origin in R2,

B(0, 5) = {x ∈ R2 : ∥x∥2 < 5} = {(x, y) ∈ R2 : x2 + y2 < 25}.

The boundary of B((0, 0), 5) is the circle of radius 5 centered at the origin, i.e.,

∂B(0, 5) = {x ∈ R2 : ∥x∥2 = 5} = {(x, y) ∈ R2 : x2 + y2 = 25}.

Any point x ∈ ∂B(0, 5) of this circle takes the form

x =
(

5 cos θ
5 sin θ

)
, for some θ ∈ [0, 2π).

We can define a sequence

xk =
( 5k

k+1 cos θ
5k

k+1 sin θ

)
,

and note that limk→+∞ xk = x. So we see that x1,x2,x3, . . . is a sequence of points
inside the open ball B(0, 5) converging to the point x on the border .

Proposition 1.5. Let S ⊆ Rn be a non-empty subset of Rn and let (xk)k∈N be a
sequence of elements in S. If (xk)k∈N converges then the limit limk→+∞ xk = x must
belong to S, the closure of S.

Example 1.6. Consider the “halfopen” rectangle

S = [0, 1] × [0, 1).
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This is not a closed set, because the point (2
3 , 1), for example, is in the boundary ∂S

but not in S itself. Moreover, the sequence(
2
3
1
2

)
,

(
2
3
2
3

)
,

(
2
3
3
4

)
,

(
2
3
4
5

)
,

(
2
3
5
6

)
, . . .

is a sequence of points in the interior of S that converge to the point (2
3 , 1), which is

not part of S, but it is part of the closure of S.
Definition 1.15 (Bounded set). A subset E ⊆ Rn is bounded if it is contained in a
ball of finite radius centered at the origin:

E ⊆ B(0, R) for some R < ∞.

Note that a closed set need not be bounded. For instance, the interval [0,∞) is
closed, but it is not a bounded.
Definition 1.16 (Compact set). A subset C ⊆ Rn is compact if it is closed and
bounded.

Compactness is the basic "finiteness criterion" for subsets of Rn. An important char-
acterization of compact sets in Euclidean spaces is given by the Bolzano-Weierstrass
theorem. Before we can state this theorem, we need to recall what is a subsequence.
Definition 1.17 (Subsequence). A subsequence of a sequence (xk)k∈N is any sequence
of the form (xki

)i∈N, where (ki)i∈N is a strictly increasing sequence of positive integers.
If a sequence converges then any subsequence of it also converges to the same limit.

Theorem 1.2 (Bolzano-Weierstrass theorem in Rn). Let C ⊆ Rn be compact. Any
sequence (xk)k∈N of elements in C possesses a convergent subsequence (xki

)i∈N whose
limit is in C.

Definition 1.18 (Bounded sequences in Rn). A sequence (xk)k∈N is bounded if there
exists a constant C > 0 such that ∥xk∥2 ⩽ C for any k ∈ N.

Note that every convergent sequence is a bounded sequence, but the opposite is
in general not true. For example, the sequence xk = (−1)k is bounded and does not
converge. The following is an immediate corollary of the Bolzano-Weierstrass theorem.

Corollary 1.2. Each bounded sequence (xk)k∈N in Rn has a convergent subsequence
(xki

)i∈N.





Chapter 2

Real-valued functions in Rn

Multivariable calculus, also known as multivariate calculus, is the extension of calculus
in one variable to calculus with functions of several variables. We start by defining
real-valued functions in more than one variable.

2.1 Definition

Definition 2.1 (Real-valued function on E ⊆ Rn). Let E be a non-empty subset of
Rn. A function f : E → R that assigns to every element x ∈ E a unique real number
y = f(x) is called a real-valued function on E.

Given a function f : E → R, the domain of f is E, denoted dom(f) or dom f . In
theory, the domain should always be a part of the definition of the function rather
than a property of it, but in practice it is often the case that the domain is inferred
by the description of the function (see Examples 2.1 and 2.3 below).

The image (sometimes also called the range) of a function f is the set of all the
output values that f produces. We denote it by Im(f) and it is formally defined as

Im(f) = {f(x) : x ∈ E} = {y ∈ R : ∃x ∈ E with f(x) = y}.

Example 2.1. Let us find and sketch the domain of the function

f(x, y) =
√
x+ y + 1
(x− 1) .

The expression for f makes sense if the denominator is not 0 and the quantity under
the square root sign is nonnegative. So the domain of f is:

dom(f) = {(x, y) ∈ R2 : x+ y + 1 ⩾ 0, x ̸= 1}.

The inequality x+ y + 1 > 0, or y > −x− 1, describes the points that lie on or above
the line y = −x − 1, while x ̸= 1 means that the points on the line x = 1 must be
excluded from the domain. See Fig. 2.1 for a sketch of this region.

19
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dom(f)

x

y

x + y + 1 = 0
x = 1

−1

−1

Figure 2.1: The domain of the function f(x, y) =
√

x+y+1
(x−1)

.

The relationship between the domain and the image of a function is described by
its graph. We use G(f) to denote the graph of a function f : E → R and it is given by

G(f) =
{(

x
f(x)

)
: x ∈ D

}
⊆ Rn+1.

Note that the graph of f is a subset of Rn+1. More precisely, the graph is the
hypersurface in Rn+1 corresponding to the set of all points (x1, . . . , xn, xn+1)⊤ ∈ Rn+1

that satisfy the equation

xn+1 = f(x1, . . . , xn).

Example 2.2. Consider the equation x+ y = z; as you learned in linear algebra, the
solutions to this equation describe a plane in R3. Now, compare this with the function
f(x, y) = x + y, a real-valued function in two variables. By definition, the graph of
f(x, y) consists of points (x, y, z) ∈ R3 where z = f(x, y). For f(x, y) = x + y, this
gives the equation of the plane x+y = z. Thus, the graph of f(x, y) = x+y is exactly
the plane in R3 determined by the equation x+ y = z.

Example 2.2 connects what you studied in linear algebra, where you worked with
linear equations like x+ y = z, to what you’re learning now in multivariable calculus.
But there’s more! With multivariable functions, you can describe not just planes, but
much more complex geometric surfaces, as this next example illustrates.

Example 2.3. Consider the real-valued function f(x, y) =
√

1 − x2 − y2, which is a
function in 2 variables. The natural domain of this function is dom(f) = {(x, y) ∈
R2 : x2 + y2 ⩽ 1}, which is the closed disc of radius 1 centered at the origin. The
image of f is Im(f) = [0, 1] and the graph G(f) = {(x, y, z) ∈ D × R, z = f(x, y)}
coincides with the set of solutions to the equations

x2 + y2 + z2 = 1 and z ⩾ 0.

In other words, the graph of the function is a semi-sphere, see Fig. 2.2 below.
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Figure 2.2: Graph of the function f(x, y) =
√

1 − x2 − y2.

Example 2.4. In physics, the functions f : Rn → R are often called scalar fields.
The gravitational potential of a mass or the electric potential of an electric charge are
examples of scalar fields:

ϕ : R3\{0} → R, ϕ(x) = k

∥x∥2

for a real constant k. In mechanics, we often consider systems where the energy is
conserved (Hamiltonian systems). For the movement of a particle of mass m in space,
subject to the potential V (x), its energy is a real-valued function of its momentum
p = mv here v is the velocity and x the position in space:

E : Rn × Rn → R, E(p,x) = ∥p∥2
2

2m + V (x).

The movement follows the lines at which the energy E is constant. These lines are
called “contour lines” and they are special cases of so-called level sets, which we define
and discuss next.

2.2 Level Sets

Definition 2.2 (Level set). Let f : E → R, E ⊆ Rn(E ̸= ∅). Given a real number
c ∈ Im(f), we call the set

Lc(f) = {x ∈ D : f(x) = c} = f−1({c})

the level set of f at height c. If c /∈ Im(f), then Lc(f) = ∅.
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Figure 2.3: The figure displays the graph of a function in 2 variables together with an
illustration of its level curves in the xy-plane. One can also think of level curves as the
projection of the horizontal traces onto the xy-plane, where a horizontal trace is a line
formed by intersecting the graph of the function with a plane parallel to the xy-plane.

Level sets of functions in 2 variables f : R2 → R are sometimes also called level
curves (or contour lines). It represents all the points where f has "height" c. A
collection of contour lines is called a contour map. Contour maps are very helpful for
visualizing functions, and they are most descriptive if the level curves are drawn for
equally spaced heights, see Fig. 2.4.

Figure 2.4: Contour map of participation as a function in two variables, the longitude
and latitude coordinates on earth.

In summary, we now have learned of two ways of graphically representing a real-
valued functions in two variables. The first way is by its graph, which is a hypersurface
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in R3, and the second is by a contour map, the projection of its contour lines onto the
plane R2. In Fig. 2.5 below you can see these two methods juxtaposed.

(2-x^3+6*y^4+y^3+x^4+6*x^4*y^2)*exp(-x^2-y^2*1.2)

–2

–1

0

1

2

x

–2

–1

0

1

2

y

0

1

2

–2

–1

1

2

y

–2 –1 1 2

x

Figure 2.5: Depiction of graph (left) and contour diagram (right) of the same function
in 2 variables.

Example 2.5. Let f(x, y) = xy−1√
y−x2

, whose domain is dom(f) = {(x, y) ∈ R2 : y >
x2}. Notice that dom(f) is open and unbounded.

Figure 2.6: The figure displays a series of level curves for the function f(x, y) = xy−1√
y−x2

passing through the point (1, 1). As we will explore subsequently, this indicates that
the limit of f(x, y) as (x, y) approaches (1,1) is not well-defined.
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2.3 Limits of functions

Definition 2.3. Let f : E → R with E ⊆ Rn. We say that f is defined in a neighbor-
hood of x0 ∈ Rn if x0 is an interior point of E ∪ {x0}. That is, there exists δ > 0 such
that B(x0, δ) ⊆ E ∪ {x0}.

In the above definition, it is possible that x0 /∈ E. In other words, it is possible
for a function to be defined in a neighborhood of x0 ∈ Rn without being defined at x0
itself.

Example 2.6. Consider the function f(x) = 1
∥x∥ whose domain equals dom(f) =

{x ∈ Rn : ∥x∥ ≠ 0} = Rn\{0}. Although this function is not defined at 0, it is defined
in a neighborhood of 0.

We are concerned with points where the function is defined in a neighborhood
around the point, because this is necessary to properly define the limit of a function at
that point. If the function is not defined in the neighborhood of a point, then it is not
always possible to talk about the limit of the function at that point without running
into mathematical contradictions.

Definition 2.4 (Limit of a function). Let E be a subset of Rn, f : E → R a function
with domain E and assume f is defined in a neighborhood of the point x0 ∈ Rn. We
say that f has a limit l ∈ R at x0 and write

lim
x→x0

f(x) = l,

if for all ε > 0 there exists δ > 0 such that for all x ∈ E,

0 < d(x,x0) ⩽ δ =⇒ |f(x) − l|⩽ ε

Note that the limit of a function at a point does not always exist. But if it does
exists then it is unique, which means that a function has at most one limit at a given
point.

Example 2.7. Let f : R2 → R be the function defined by

f(x, y) =


x3+y3

x2+y2 if (x, y) ̸= (0, 0)
0 if (x, y) = (0, 0)

Let’s calculate its limit as (x, y) approaches (0, 0). We will learn several different
methods of finding the limit of a function at a point (see, for example, the Squeeze
Theorem below), but the most standard method consists of simply verifying Defini-
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tion 2.4. Given the relation 0 ⩽
√
x2 + y2, we have

|f(x, y)| = |x+ y| |x2 − xy + y2|
x2 + y2 ⩽ (|x| + |y|)x

2 + |x||y| + y2

x2 + y2

⩽ (|x| + |y|)
x2 + |x||y| + y2 + 1

2(|x| − |y|)2

x2 + y2

= (|x| + |y|)
3
2x

2 + 3
2y

2

x2 + y2

⩽ 2
√
x2 + y2

3
2x

2 + 3
2y

2

x2 + y2 = 3
√
x2 + y2 = 3∥(x, y)∥2.

This shows that as long as δ < ε
3 we have d((x, y), (0, 0)) < δ =⇒ |f(x, y)| ⩽ ε.

According to Definition 2.4, this means exactly that lim(x,y)→(0,0) f(x, y) = 0.

Proposition 2.1 (Characterization of limits by sequences). Let E ⊆ Rn,x0 ∈ Rn

and assume f : E → R defined on a neighbourhood of x0, and l ∈ Rn. The following
statements are equivalent:

1. limx→x0 f(x) = l.
2. limk→∞ f(xk) = l for every sequence (xk)k∈N in E\{x0} with limk→∞ xk = x0.

Properties of limits of functions. Assume limx→x0 f(x) and limx→x0 g(x) exist.
1. Linear combinations: For constants α, β ∈ R, we have

lim
x→x0

(αf(x) + βg(x)) = α
(

lim
x→x0

f(x)
)

+ β
(

lim
x→x0

g(x)
)

2. Products:

lim
x→x0

(f(x) · g(x)) =
(

lim
x→x0

f(x)
)

·
(

lim
x→x0

g(x)
)
.

3. Quotients: If limx→x0 g(x) ̸= 0, then

lim
x→x0

(
f(x)
g(x)

)
= limx→x0 f(x)

limx→x0 g(x) .

4. Compositions: Let a = (a1, . . . , an) ∈ Rn and b = (b1, . . . , bn) ∈ Rn be given. If
limx→a f(x) exists, and gi : R → R are functions such that limx→bi

gi(x) = ai for
each i, then

lim
x→b

f(g1(x1), g2(x2), . . . , gn(xn)) = lim
x→a

f(x).

Example 2.8. Let us calculate

lim
(x,y)→(−3,4)

1 + xy

1 − xy
.

Since lim(x,y)→(−3,4) x = −3 and lim(x,y)→(−3,4) y = 4, it follows from properties 1 and 2
of limits of functions that

lim
(x,y)→(−3,4)

1 + xy = 1 +
(

lim
(x,y)→(−3,4)

x
)(

lim
(x,y)→(−3,4)

y
)

= 1 + (−3) · 4 = −11.
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Similarly, we obtain lim(x,y)→(−3,4) 1 − xy = 13. Since the limit of the numerator
and denominator exist and the denominator does not converge to 0, it follows from
property 3 of limits of functions that

lim
(x,y)→(−3,4)

1 + xy

1 − xy
= lim(x,y)→(−3,4) 1 + xy

lim(x,y)→(−3,4) 1 − xy
= −11

13 .

2.4 Techniques for finding limits of functions

Example 2.9 (The problem with limits in several variables). Let f : R2 → R2 be a
function in two variables; we would like to determine the limit

lim
(x,y)→(0,0)

f(x, y).

A (naïve) idea is to compute the two iterated limits:

lim
x→0

lim
y→0

f(x, y) or lim
y→0

lim
x→0

f(x, y).

If these two limits exist and coincide, one might then be led to believe that the limit of
the function at (0, 0) is equal to 0. However, this is note true! For example, consider
the function

f(x, y) =


xy
x2+y2 , if (x, y) ̸= (0, 0),
0, if (x, y) = (0, 0).

For this particular function, we find that the iterated limits are:

lim
x→0

lim
y→0

f(x, y) = lim
x→0

lim
y→0

xy

x2 + y2 = lim
x→0

0
x2 + 0 = 0,

lim
y→0

lim
x→0

f(x, y) = lim
y→0

lim
x→0

xy

x2 + y2 = lim
y→0

0
0 + y2 = 0.

However, instead having the two variables approach 0 one after the other, we can have
them approach zero simultaneously, for example along the diagonal x = y. In this
case, setting both x and y equal to t and letting t go to zero, we obtain

lim
t→0

f(t, t) = lim
t→0

t · t
t2 + t2

= lim
t→0

1
2 = 1

2 ,

which yields a different result. Since we can approach (0, 0) in two different ways and
obtain different results, it means that the limit does not exist.
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→ 0

→ 1
2

→ −1
2

A next idea would be to test all possible directions,

lim
t→0

f(αt, βt),

with α, β ∈ R not both zero (thus covering all lines of equation βx − αy = 0, which
are all lines passing through 0). If all the limits along all the lines passing through 0
exist and coincide, can we conclude that the limit exists? The answer is still no! This
is because we might obtain a different result when following a trajectory that is not a
straight line.

→ 0 → 1
2

For example, if f : R2 → R is defined by

f(x, y) =


xy2

x2+y4 , if (x, y) ̸= (0, 0),
0, if (x, y) = (0, 0).

then for any α, β ∈ R, we have

lim
t→0

f(αt, βt) = lim
t→0

αβ2t3

α2t2 + β4t4
.

If α = 0, then β ̸= 0 and we obtain 0. Otherwise,

lim
t→0

f(αt, βt) = lim
t→0

αβ2t

α2 + β4t2
= 0
α + 0 = 0.

We obtain 0 in all directions. However,

lim
t→0

f(t2, t) = lim
t→0

t4

t4 + t4
= 1

2 .

Again, this means that the limit does not exist.
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2.4.1 The squeeze theorem

Theorem 2.1 (Squeeze theorem - théorème des gendarmes). Let E ⊆ Rn, and func-
tions f, g, h : E → R be defined on a neighborhood of x0 ∈ Rn. If

lim
x→x0

g(x) = lim
x→x0

h(x) = l

and there exists ε > 0 such that for all x ∈ E,

0 < d(x,x0) < ε =⇒ g(x) ⩽ f(x) ⩽ h(x)

then

lim
x→x0

f(x) = l.

Example 2.10. Consider f : R2\{(0, 0)} → R defined by

f(x, y) = x4y3

x4 + y12 .

Let’s discuss the limit

lim
(x,y)→(0,0)

f(x, y).

We can estimate

0 ⩽ f(x, y) = x4y3

x4 + y12 ⩽
x4y3

x4 = y3.

So if we define

g(x, y) = 0 and h(x, y) = y3

then g(x, y) ⩽ f(x, y) ⩽ h(x, y). Since lim(x,y)→(0,0) g(x, y) = lim(x,y)→(0,0) h(x, y) = 0,
it follows from the Squeeze Theorem that lim(x,y)→(0,0) f(x, y) = 0.

2.4.2 Using Polar coordinates

Polar coordinates are useful when given a function in two variables involving terms
like x2 + y2, representing the distance from the origin, or when the function behaves
similarly along all directions (i.e., has radial symmetry). This simplifies the analysis
by converting the problem into one of radial distance and angular symmetry, making
it easier to evaluate limits as the distance from the origin approaches zero.

The following version of the squeeze theorem involving polar coordinates allows
us to bound a function in terms of its distance from the origin, making it easier to
evaluate limits as the distance approaches zero.

Theorem 2.2 (Squeeze theorem in polar coordinates). Let E ⊆ R2 and (x0, y0) ∈ R2.
Assume f : E → R is a function that is defined in the neighborhood of (x0, y0) and let



2.4. TECHNIQUES FOR FINDING LIMITS OF FUNCTIONS 29

l ∈ R. Then,

lim
(x,y)→(x0,y0)

f(x, y) = l

if and only if there exists ε > 0 and a function ψ : (0, ε) → [0,∞) such that

(i) limr→0+ ψ(r) = 0, and

(ii) for all θ ∈ [0, 2π) we have |f(x0 + r cos θ, y0 + r sin θ) − l| ⩽ ψ(r)

Example 2.11. Consider f : R2\{(0, 0)} → R defined by

f(x, y) = x2y

x2 + y
5
2
.

Let’s discuss the limit

lim
(x,y)→(0,0)

f(x, y).

We switch to polar coordinates and get

f(r cos θ, r sin θ) = r3 cos2 θ sin θ
r2 cos2 θ + r

5
2 sin 5

2 θ

= r cos2 θ sin θ
cos2 θ + r

1
2 sin 5

2 θ
.

Thus,

|f(r cos θ, r sin θ)| = r cos2 θ| sin θ|
cos2 θ + r

1
2 sin 5

2 θ
⩽
r cos2 θ| sin θ|

cos2 θ
= r| sin θ| ⩽ r.

Taking l = 0 and ψ(r) = r, we see that the hypothesis of the squeeze theorem in polar
coordinates is satisfied, and conclude that

lim
(x,y)→(0,0)

f(x, y) = 0.

2.4.3 Using Taylor’s theorem

Taylor’s theorem (which you have learned in Analysis I) can be useful to find limits
because it approximates a function near a point by a polynomial, simplifying the
analysis before applying the squeeze theorem. For convenience, let us quickly recall
the statement of Taylor’s theorem.

Theorem 2.3 (Taylor’s theorem – single variable case). Let k ∈ N. Suppose I ⊆ R
is an open interval and f : I → R is a function of class Ck(I). Then for any a ∈ I we
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have

f(x) =

kth-order approximation︷ ︸︸ ︷
k∑

j=1

f (j)(a)
j! (x− a)k +

remainder︷ ︸︸ ︷
rk(x)

︸ ︷︷ ︸
kth-order expansion

where rk(x) is an “error” term satisfying limx→a
rk(x)

|x−a|k = 0.

Example 2.12. Calculate the following limits if they exist:
(a) lim(x,y)→(0,0)

x2+ln(1+y2)√
x2+y2

(b) lim(x,y)→(0,0)
1−e(x3)

x2+y2

(a) The first-order expansion of ln(1 + x) around a = 0 is

ln(1 + x) = x+ r1(x)

where limx→0
r1(x)

x
= 0. We obtain

lim
(x,y)→(0,0)

x2 + ln(1 + y2)√
x2 + y2 = lim

(x,y)→(0,0)

x2 + y2 + r1(y2)√
x2 + y2

= lim
(x,y)→(0,0)

x2 + y2
√
x2 + y2 + lim

(x,y)→(0,0)

r1(y2)√
x2 + y2 = 0 + 0 = 0.

The second limit is zero because, for (x, y) ̸= (0, 0),

−|r1(y2)|
|y|

⩽
r1(y2)√
x2 + y2 ⩽

|r1(y2)|
|y|

with

lim
(x,y)→(0,0)

|r1(y2)|
|y|

= lim
(x,y)→(0,0)

|y| · lim
(x,y)→(0,0)

|r1(y2)|
|y2|

= 0 · 0 = 0.

By the squeeze theorem, it follows that

lim
(x,y)→(0,0)

r1(y2)√
x2 + y2 = 0.

(b) The first-order expansion of ex around a = 0 is

ex = 1 + x+ r1(x)

where limx→0
r1(x)

x
= 0. We obtain

lim
(x,y)→(0,0)

1 − ex3

x2 + y2 = lim
(x,y)→(0,0)

1 − 1 − x3 − r1(x3)
x2 + y2 = lim

(x,y)→(0,0)

−x3 − r1(x3)
x2 + y2 .
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Now, for (x, y) ̸= (0, 0),

−|x3| + |r1(x3)|
|x2|

⩽
−x3 − r1(x3)
x2 + y2 ⩽

|x3| + |r1(x3)|
|x2|

with

lim
(x,y)→(0,0)

|x3| + |r1(x3)|
|x2|

=
(

lim
(x,y)→(0,0)

|x3|
|x2|

)
+
(

lim
(x,y)→(0,0)

|r1(x3)|
|x2|

)
= 0 + 0 = 0.

The squeeze theorem therefore ensures that

lim
(x,y)→(0,0)

−x3 − r1(x3)
x2 + y2 = 0.

2.4.4 Using change of variables

The following proposition enables us to convert limits in two variables into limits in a
single variable.

Proposition 2.2 (Composition with Functions of a Single Variable). Let E ⊆ R2

and let g : E → R be defined in a neighborhood of (x0, y0) ∈ R2. Let I ⊆ R be such
that I ⊆ g(E) and let φ : I → R be defined in a neighborhood of l ∈ R. Finally, let
f : E → R be defined by f(x, y) = φ(g(x, y)). If

lim
(x,y)→(x0,y0)

g(x, y) = l and lim
t→l

φ(t) exists,

then

lim
(x,y)→(x0,y0)

f(x, y) = lim
t→l

φ(t).

Example 2.13. Let f : R2\{(0, 0)} → R be defined by

f(x, y) = tan(3x2 + y2)
3x2 + y2 .

We analyze the limit

lim
(x,y)→(0,0)

f(x, y).

If we define g(x, y) = 3x2 + y2, then by properties of limits we have

lim
(x,y)→(0,0)

g(x, y) = 3
(

lim
(x,y)→(0,0)

x
)2

+
(

lim
(x,y)→(0,0)

y
)2

= 3 · 02 + 02 = 0.

Define φ : R\{0} → R by

φ(t) = tan(t)
t

.
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Then we have f(x, y) = φ(g(x, y)). Hence, in light of Proposition 2.2, we have

lim
(x,y)→(0,0)

tan(3x2 + y2)
3x2 + y2 = lim

t→0

tan(t)
t

.

Now,

lim
t→0

tan(t)
t

L’Hôpital’s Rule= lim
t→0

1
cos2(t)

1 = 1.

Thus,

lim
(x,y)→(0,0)

f(x, y) = 1.

Figure 2.7: Graph of the function f(x, y) = xy ln(|x| + |y|).

Example 2.14. Let us demonstrate that the limit of the function f : R2 → R defined
by

f(x, y) =
xy ln(|x| + |y|) if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

is zero as (x, y) approaches (0, 0) (see Fig. 2.7). Note that for every point (x, y) with
0 <

√
x2 + y2 < 1 we have |xy| ⩽ |x| + |y|. This implies that for any such (x, y) we

have the estimate

0 ⩽ |f(x, y)| = |xy ln(|x| + |y|)| ⩽ (|x| + |y|)| ln(|x| + |y|)|.

So if we define

g(x, y) = −(|x| + |y|)| ln(|x| + |y|)| and h(x, y) = (|x| + |y|)| ln(|x| + |y|)|

then we see that

0 <
√
x2 + y2 < 1 =⇒ g(x, y) ⩽ f(x, y) ⩽ h(x, y).
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Substituting t for |x| + |y|, it follows from Proposition 2.2 that:

lim
(x,y)→(0,0)

±(|x| + |y|)| ln(|x| + |y|)| = lim
t→0+

t ln t = 0,

where we used the fact limt→0+ t ln t = 0, which can be verified using L’Hôpital’s Rule.
In other words lim(x,y)→(0,0) g(x, y) = lim(x,y)→(0,0) h(x, y) = 0. Invoking the Squeeze
Theorem, we conclude that lim(x,y)→(0,0) f(x, y) = 0.

2.4.5 Testing along polynomial paths

Testing paths of the form (tα, tβ) is useful for evaluating limits of functions in two
variables because these paths allow us to explore how the function behaves along
different directions approaching the origin. By adjusting the exponents α and β, we
can test a variety of trajectories that the function might take, revealing whether the
limit depends on the direction of approach.

Example 2.15. Let f : R2\{(0, 0)} → R be defined by

f(x, y) = x3y3

x4 + y12 .

Our goal is to determine the limit

lim
(x,y)→(0,0)

f(x, y).

First, let us test all linear paths by considering

lim
t→0

f(αt, βt),

with α, β ∈ R not both zero. In this case, we get

lim
t→0

f(αt, βt) = lim
t→0

α3β3t6

α4t4 + β12t12 = lim
t→0

α3β3t2

α4 + β12t8
= 0.

We see that all linear paths yield the same limit. Therefore, to demonstrate that the
limit does not exist, we must consider non-linear paths.

When dealing with a denominator containing different powers of x and y, a good
approach is to examine paths of the form (tα, tβ) for various values of α, β ∈ (0,∞).
This gives

lim
t→0

f(tα, tβ) = lim
t→0

t3α+3β

t4α + t12β
.

First, we can take α = β = 1. In this case we have

lim
t→0

f(t, t) = lim
t→0

t6

t4 + t12 = lim
t→0

t2

1 + t8
= 0.

Next, we choose α and β so that the powers appearing in the denominator match. For
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us, this means we want to find α and β such that

4α = 12β.

For example, this is achieved by taking α = 3 and β = 1. Then,

lim
t→0

f(t3, t) = lim
t→0

t12

t12 + t12 = 1
2 .

Since α = β = 1 and α = 3, β = 1 yield different results, we conclude that the limit
does not exist.

2.5 Continuity at a Point
The purpose of this section is to introduce and discuss continuous functions in several
variables.
Definition 2.5 (Continuous function at a point). Let E ⊆ Rn and let x0 be an interior
point of E. A function f : E → R is said to be continuous at x0 if

lim
x→x0

f(x) = f(x0).

Definition 2.6 (1st equivalent definition). Let x0 be an interior point of E. A function
f : E → R is continuous at x0 if and only if, for every real number ε > 0, there exists
a real number δ > 0 such that for all x ∈ E,

d(x,x0) ⩽ δ =⇒ |f(x) − f(x0)|⩽ ε.

Definition 2.7 (2nd equivalent definition). Let x0 be an interior point of E. A function
f : E → R is continuous at x0 if and only if, for every sequence (ak)k∈N of elements of
E we have

lim
k→+∞

ak = x0 =⇒ lim
k→+∞

f(ak) = f(x0).

Remark 2.1. It is very tempting to believe that if a function is continuous in ev-
ery coordinate then the function is continuous. However, this is NOT TRUE! As a
counterexample, consider the function

f(x, y) =


xy
x2+y2 if (x, y) ̸= (0, 0)
0 if (x, y) = (0, 0)

.

Let f1, f2 : R → R denote the two functions obtained by restricting f(x, y) to the first
and second coordinate at the point (0, 0), that is, f1(x) = f(x, 0) and f2(y) = f(0, y).
Then f1(x) and f2(y) both are continuous at x = 0 and y = 0 respectively. Nonetheless,
we have already seen in Example 2.9 that the limit of f(x, y) as (x, y) approaches (0, 0)
does not exist, which means that the function f(x, y) (as a function in two variables)
is not continuous at the point (0, 0).
Properties of continuity. Let f and g be two functions from E ⊆ Rn to R that are
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continuous at a point x0 ∈ Rn. Then:
1. Linear combinations: For any α, β ∈ R, the function αf + βg is continuous at

x0;
2. Products: The product function fg is continuous at x0;
3. Quotients: If g(x0) ̸= 0 and g(x) ̸= 0 for all x ∈ E then the quotient f

g
is

continuous at x0;
4. Compositions: Let A be a subset of Rn and let

g1, . . . , gp : A → R

be functions continuous at the point a = (a1, . . . , an). On the other hand, let B be
a subset of Rp containing

{(g1(y), . . . , gp(y)) : y ∈ A}

and f : B → R a function continuous at the point b = (g1(a), . . . , gp(a)). Then the
function F : A → R defined by

F (y1, . . . , yn) = f(g1(y1, . . . , yn), . . . , gp(y1, . . . , yn))

is continuous at the point a = (a1, . . . , an).
Example 2.16. Let us demonstrate the usefulness of the properties of continuity by
showing that the function F : R2 → R given by F (x, y) = − sin(x)y is continuous at
the point (0, 0). To do this, consider the three auxiliary functions f : R2 → R and
g1, g2 : R → R defined respectively by

f(x, y) = xy, g1(x, y) = − sin(x), and g2(x, y) = y.

Since both g1(x, y) and g2(x, y) are continuous at (0, 0) and f(x, y) is continuous
at (g1(0, 0), g2(0, 0)) = (0, 0), we can conclude that F (x, y) = f(g1(x, y), g2(x, y)) is
continuous at the point (0, 0) (See Fig. 2.8).

Figure 2.8: Graph of the function F (x, y) = − sin(x)y.
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2.6 Continuity in a Region

Definition 2.8 (Continuous function in a Region). Let E be a non-empty subset of
Rn. A function f : E → R is continuous on E if for every x0 ∈ E and every real
number ε > 0 there exists a real number δ > 0 such that for all x ∈ E,

d(x,x0) ⩽ δ =⇒ |f(x) − f(x0)|⩽ ε.

Definition 2.9 (Equivalent definition). Let E be a non-empty subset of Rn. A func-
tion f : E → R is continuous on E if for every sequence (ak)k∈N of elements of E we
have

lim
k→+∞

ak = x0 =⇒ lim
k→+∞

f(ak) = f(x0).

Remark 2.2. If E is an open set then f : E → R is continuous on E if and only if it
is continuous at every point in E.

Example 2.17. Let us demonstrate that the function f : R2 → R defined by

f(x, y) =


sin(xy)
x

if x ̸= 0
y if x = 0

is continuous on R2 (see Fig. 2.9). Define the function h : R → R by

h(s) =


sin(s)
s

if s ̸= 0
1 if s = 0

It is continuous for all s ̸= 0 and, as lims→0 h(s) = 1 = h(0), it is also continuous at 0.
This is useful because we have f(x, y) = h(xy)y for all (x, y) ∈ R2. Since the functions

a(x, y) = xy and b(x, y) = y

are continuous at every point in R2 and f(x, y) = h(xy)y = a(h(a(x, y)), b(x, y)) for all
(x, y) ∈ R2, it follows from the properties of continuity that f is continuous at every
point in R2.
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Figure 2.9: Graph of f(x, y) = sin(xy)
x

for x ̸= 0.

2.7 Extreme Value Theorem and Intermediate Value
Theorem

Definition 2.10 (Maximum and minimum). Let E ⊆ Rn be non-empty and f a
function from E to R. A real number M satisfying

• f(x) ⩽M for every element x in E, and
• M ∈ Im(f),

is called the maximum of the function f on E and is denoted by maxx∈E f(x). If
x0 ∈ E is such that f(x0) = M then we say that the function f reaches its maximum
at the point x0. Similarly, a real number m satisfying

• f(x) ⩾ m for every element x in E, and
• m ∈ Im(f),

is called the minimum of the function f on E and is denoted by minx∈E f(x). If
x0 ∈ E is such that f(x0) = M then we say that the function f reaches its minimum
at the point x0.

Proposition 2.3 (Extreme value theorem). Let E be a compact subset of Rn and
f : E → R a continuous function. Then f has a minimum minx∈E f(x) and a maximum
maxx∈E f(x) on E.





Chapter 3

Partial derivatives and
differentiability

3.1 Partial Derivatives
Recall that given a differentiable function in a single variable f : R → R, the derivative
of f at the point a ∈ R is defined as

f ′(a) = df

dx
(a) = lim

t→0

f(a+ t) − f(a)
t

= lim
x→a

f(x) − f(a)
x− a

.

We are already familiar with several different ways of thinking about the derivative of
a function:

• The derivative of a function f quantifies the rate of change of the function’s
output value with respect to its input value. For example, if the derivative
of f at a point a is a ‘large’ positive number then a positive change close to
a will result in a ‘proportionately large’ positive change in the output value.
Conversely, if the derivative of f at a point a is a ‘small’ negative number then a
positive change close to a will result in a ‘proportionately small’ negative change
in the output value.

• The derivative f ′(a) of a function f at a point a equals the slope of the tangent
line to the graph of the function at that point. Moreover, the tangent line is the
best linear approximation of the function near that input value.

The goal of this chapter is to extend derivatives to functions in several variables.
While functions in one variable have only one derivative, functions in several variables
have multiple derivatives, one for each variable. These are called the partial derivatives.

Let

e1 =



1
0
0
...
0

 , e2 =



0
1
0
...
0

 , . . . , en =



0
0
...
0
1


39
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denote the vectors of the canonical basis of Rn. Note that for any element x =
(x1, . . . , xn) ∈ Rn we have x = ∑n

k=1 xkek, where xk = ⟨x, ek⟩, for k = 1, . . . , n.

Definition 3.1 (Partial derivatives). Suppose E ⊆ Rn is a set and a = (a1, . . . , an)
is an interior point of E. Let f : E → R be a real-valued function in the variables
(x1, . . . , xn). The partial derivative of f at the point a with respect to the variable xk

(the k-th variable) is defined as

∂f

∂xk

(a) = lim
t→0

f (a + tek) − f(a)
t

whenever this limit exists. If this limit does not exist then we say that the partial
derivative of f at a with respect to xk does not exist.

Intuitively, the partial derivative ∂f
∂xk

is the derivative of f(x1, . . . , xn) with respect
to the variable xk while all the other variables remain constant. We also use the
notation

Dkf(a) = ∂f

∂xk

(a);

or if the real variables of f are explicitly given, say f(x, y, z), then we write

Dxf(x, y, z) = ∂f

∂x
(x, y, z)

Dyf(x, y, z) = ∂f

∂y
(x, y, z)

Dzf(x, y, z) = ∂f

∂z
(x, y, z).

Remark 3.1. The partial derivative ∂f
∂xk

(a) exists if and only if the function gk(t) =
f (a + tek) is differentiable at t = 0, because

∂f

∂xk

(a) = lim
t→0

f (a + tek) − f(a)
t

= lim
t→0

gk(t) − gk(0)
t

= g′
k(0). (3.1)

This means that ∂f
∂xk

(a) corresponds to the slope of the tangent line pointing in the
direction of the canonical vector ek. In the case of two variables, Fig. 3.1 below provides
an illustration of the partial derivatives as the slope of tangent lines in the x-direction
and in the y-direction.
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(x0, y0, f(x0, y0))

x

y

z

tangent line in x direction

with slope ∂f
∂x

(x0, y0)

(x0, y0, 0)

(x0, y0, f(x0, y0))

x

y

z

tangent line in y direction

with slope ∂f
∂y

(x0, y0)

(x0, y0, 0)

Figure 3.1: The gray surface is the graph of the function f(x, y) and contains the point
(x0, y0, f(x0, y0)). In the left figure, the plane y = y0 (pink plane) intersects the graph
of f(x, y) in a curve. The tangent line to this curve at the point (x0, y0, f(x0, y0)) (pink
line) has slope equal to the partial derivative of f(x, y) with respect to the variable x
at the point (x0, y0). The right figure depicts the tangent line (green line) to the curve
that is the intersection of the graph of f(x, y) with the plane x = x0 (green plane) at
the point (x0, y0, f(x0, y0)), whose slope is the partial derivative of f(x, y) with respect
to the variable y at the point (x0, y0).

Example 3.1. Consider a pot filled with water being heated on top of a stove
(see Fig. 3.2). Let us think of the pot as a cylinder in R3 given by

D = {(x, y, z) ∈ R3 : x2 + y2 < 1, 0 < z < 1}.

Suppose at time t the temperature of the water at the position (x, y, z) is given by the
equation

T (x, y, z, t) =
(

100 − 80
1 + t

)
·
(

1 − z

2

)
· e−x2−y2

.

Then T is a function in 4 variables (3 space variables and 1 time variable) with domain
dom(T ) = D × [0,∞). We can calculate its partial derivatives as

Tx(x, y, z, t) = ∂T

∂x
(x, y, z, t) =

(
100 − 80

1 + t

)
·
(

1 − z

2

)
· (−2x) · e−x2−y2

,

Ty(x, y, z, t) = ∂T

∂y
(x, y, z, t) =

(
100 − 80

1 + t

)
·
(

1 − z

2

)
· (−2y) · e−x2−y2

,

Tz(x, y, z, t) = ∂T

∂z
(x, y, z, t) =

(
100 − 80

1 + t

)
·
(

− 1
2

)
· e−x2−y2

,

Tt(x, y, z, t) = ∂T

∂t
(x, y, z, t) = 80

(1 + t)2 ·
(

1 − z

2

)
· e−x2−y2

.
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What do these partial derivatives mean? For example, Tt(x, y, z, t) describes the rate
of change in temperature at a stationary point (x, y, z) as time t changes. Since Tt is
always positive, we see that in every point (x, y, z) the temperature is increasing as
the time t increases. Conversely, due to the sign of Tx, Ty, Tz, we see that for a fixed
time t, the temperature is decreasing as we move away from the origin and towards
the boundary of the cylinder, which makes sense because the water at the edge of the
pot should be cooler than the water in the middle.

Figure 3.2: A pot of water with heat being applied from the bottom.

Definition 3.2 (Gradient vector). Let E ⊆ Rn be an open set, let f : E → R be a
function and suppose all partial derivatives ∂f

∂x1
(a), . . . , ∂f

∂xn
(a) of f at the point a ∈ E

exist. Then

∇f(a) = grad f(a) :=
(
∂f

∂xn

(a), . . . , ∂f
∂xn

(a)
)

∈ R1×n,

is called the gradient of f at a. If at least one of the partial derivatives ∂f
∂x1

(a), . . . , ∂f
∂xn

(a)
of f at the point a does not exist then we say that the gradient of f at a does not
exist.
Remark 3.2. The gradient ∇f(a) can also be written as a linear combination using
the canonical vectors e1, . . . , en,

∇f(a) =
n∑

k=1
Dkf(a)e⊤

k .

Therefore Dkf(a) = ∂f
∂xk

(a) = ⟨∇f(a), ek⟩ for all k = 1, 2, . . . , n.

3.2 Directional Derivatives
Definition 3.3 (Directional derivatives). Let E ⊆ Rn be an open set, f : E → R a
real-valued function, and v ∈ Rn\{0}. The directional derivative of f along the vector
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v at the point a ∈ E is defined as

∇vf(a) = lim
t→0

f (a + tv) − f(a)
t

wherever this limit exists. If this limit does not exist then we say that the directional
derivative of f along v at the point a does not exist. When v is a unit vector (which
means ∥v∥2 = 1), it is also called the derivative in the direction v.

Note that the partial derivative with respect to the variable xk coincides with the
directional derivative along the vector ek, that is,

∂f

∂xk

(a) = ∇ek
f(a).

Many of the familiar properties of the ordinary derivative hold for the directional
derivative. In particular, if ∇vf(a) and ∇vg(a) exist then

1. Linearity: For all α, β ∈ R we have

∇v(αf + βg)(a) = α(∇vf(a)) + β(∇vg(a)).

2. Product rule (or Leibniz’s rule):

∇v(f · g)(a) = g(a) · ∇vf(a) + f(a) · ∇vg(a).

3. Quotient rule: If g(a) ̸= 0 then

∇v

(
f

g

)
(a) = g(a) · ∇vf(a) − f(a) · ∇vg(a)

g(a)2 .

3.3 Differentiability at a Point
Recall from linear algebra that a linear map from Rn to R is a function L : Rn → R
that satisfies linearity, meaning it preserves addition and scalar multiplication: for all
x,y ∈ Rn and all α, β ∈ R, we have

L(αx + βy) = αL(x) + βL(y).

Note that any linear map L can always be represented as L(x) = ⟨w,x⟩, where w ∈ Rn

is a fixed vector and ⟨., .⟩ denotes the standard inner product on Rn defined in (1.1).

Definition 3.4 (Differentiability at a point). Let E be a non-empty open subset of
Rn. A function f : E → R is differentiable at the point a ∈ E if there exists a linear
map La : Rn → R such that

lim
h→0

∣∣∣f (a + h) − f(a) − La(h)
∣∣∣

∥h∥2
= 0.

In this case, the linear map La : Rn → R is called the differential of f at the point a.

Theorem 3.1 (Fundamental theorem). Suppose f : E → R is a function defined on
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a set E ⊆ Rn, and a is an interior point of E. If f is differentiable at a then the
following statements hold:

(i) f is continuous at a.
(ii) All partial derivatives of f at the point a exist, the gradient vector ∇f(a) of f

at the point a exists, and the differential La : Rn → R of f at the point a is the
same as scalar multiplication by the gradient vector, i.e.,

La(v) = ∇f(a) · v, ∀v ∈ Rn.

(iii) All directional derivatives of f at the point a exist and are given by

∇vf(a) = La(v) = ∇f(a) · v, ∀v ∈ Rn.

(iv) For all x ∈ E we have

f(x) = f(a) + ∇f(a) · (x − a) + r1(x),

where r1 is an “error” term satisfying

lim
x→a

r1(x)
∥x − a∥2

= 0.

The function

t(x) = f(a) + ∇f(a) · (x − a)

is called the linearization (or linear approximation) of f at the point a.
(v) The function f(x) = f(x1, . . . , xn) increases most rapidly in the direction ∇f ,

and decreases most rapidly in the direction −∇f . Any vector v ∈ Rn\{0}
orthogonal to ∇f is a direction of zero change.

Figure 3.3: The gradient vector ∇f gives the direction of steepest incline, while the
rate of change in the direction of the contour lines equals 0.

Remark 3.3. The gradient is perpendicular to the level sets of a function.
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Theorem 3.2 (Sufficient conditions for differentiability). Let E ⊆ Rn, f : E → R,
and suppose a is an interior point of E. If there exists δ > 0 such that every partial
derivative ∂f

∂xk
of f exists at every point in the open ball B(a, δ) and ∂f

∂xk
(x1, . . . , xk) is

a continuous function at the point a, then f is differentiable at the point a.

Example 3.2. Consider n = 2, E = R2, f : R2 → R, f(x, y) = x2 − y2. We have:
∂f

∂x
(x, y) = 2x,

∂f

∂y
(x, y) = −2y,

∇f(x, y) = (2x,−2y).

Example 3.3. Let E = {(x, y) ∈ R2 : x > 0} and f(x, y) = ey log x. Then

∂f

∂x
(x, y) = yey log x

x
,

∂f

∂y
(x, y) = ey log x · log x,

∇f(x, y) =
(
yey log x

x
, ey log x · log x

)
.

3.4 Tangent (Hyper)Planes

Recall that a straight line is called a tangent line to the curve y = f(x) at a point
x = a if the line passes through the point (a, f(a)) on the curve and has slope f ′(a),
where f ′(x) is the 1st derivative of f . The equation of the tangent line is then given
by

y = f(a) + f ′(a)(x− a).

The equation of the tangent line is closely related to Taylor’s theorem, which says that
the 1st-order Taylor expansion of f is given by

f(x) =

linear approximation︷ ︸︸ ︷
f(a) + f ′(a)(x− a) +

remainder︷ ︸︸ ︷
r1(x)︸ ︷︷ ︸

1st-order expansion

where r1(x) is an “error” term that satisfies limx→a
r1(x)
|x−a| = 0.

A similar concept applies to multivariate functions in n-dimensional Euclidean
space. As we have seen (cf. part (iv) of Theorem 3.1) if f(x1, . . . , xn) is a function in
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n variables that is differentiable at a point a ∈ Rn then

f(x) = f(a) + La(x − a) + r1(x) =

linear approximation︷ ︸︸ ︷
f(a) + ∇f(a) · (x − a) +

remainder︷ ︸︸ ︷
r1(x)︸ ︷︷ ︸

1st-order expansion

(3.2)

where r1(x) is an “error” term satisfying limx→a
r1(x)

∥x−a∥2
= 0.

Definition 3.5 (Tangent hyperplane). Let E ⊆ Rn and f : E → R, and assume that
a is an interior point of E. Suppose f is differentiable at a, and consider the linear
approximation of f at a given by

t(x) = f(a) + ∇f(a) · (x − a).

The graph of t(x) is called the tangent hyperplane of f at a. That is, the tangent
hyperplane consists of all points (x1, . . . , xn, xn+1) ∈ Rn+1 satisfying the equation

xn+1 = t(x1, . . . , xn).

This equation is commonly referred to as the equation of the tangent hyperplane.

When n = 1, the tangent hyperplane is the same as the tangent line, and when
n = 2 the tangent hyperplane is usually just called the tangent plane (see Fig. 3.4).

Figure 3.4: Tangent plane to a function z = f(x, y) at P = (x0, y0, f(x0, y0)).

Example 3.4. Let us find the equation of the tangent plane to the elliptic paraboloid

z = 2x2 + y2 + 1

at the point (1,−1, 4). This elliptic paraboloid is the graph of the function f(x, y) =
2x2 + y2 + 1. The partial derivatives of f form the gradient given by

∇f(x, y) = (4x, 2y).



3.5. FUNCTIONS OF CLASS C1 47

We can now write down the linear approximation of f(x, y) at the point (1,−1) as

t(x, y) = f(1,−1) + ∇f(1,−1) ·
((

x
y

)
−
(

1
−1

))
=

= 4 + (4,−2) ·
(
x− 1
y + 1

)
= 4 + 4(x− 1) − 2(y + 1)
= 4x− 2y − 2.

Thus, the equation of the tangent plane to the elliptic paraboloid at the point (1,−1, 4)
is

z = 4x− 2y − 2.

3.5 Functions of Class C1

Definition 3.6 (Differentiability in a region). Let E ⊆ Rn be an open set and f : E →
R a function on E. If f is differentiable at every point a ∈ E then we say that f is
differentiable on E.

Definition 3.7 (Functions of Class C1). Let E ⊆ Rn be an open set. A function
f : E → R is said to be of class C1(E) if all its partial derivatives exist and are
continuous at each point x ∈ E.

The existence and continuity of the partial derivatives at every point in E implies
the differentiability of the function at every point in E (see Theorem 3.2). It follows
that any function of class C1(E) is differentiable on E.

Proposition 3.1. Let E ⊆ Rn be open and f : E → R a function of class C1(E).
Then f is differentiable on E.

Example 3.5. Consider the function f : R2 → R given by

f(x, y) =
{

xy
x2+y2 if (x, y) ̸= (0, 0)

0 if (x, y) = (0, 0)

We have already studied this function in Example 2.9 and Remark 2.1.
• For (x, y) ̸= (0, 0), we can calculate the partial derivatives as

∂f

∂x
(x, y) = y

x2 + y2 − 2x2y

(x2 + y2)2

∂f

∂y
(x, y) = x

x2 + y2 − 2xy2

(x2 + y2)2 .
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• At the point (0, 0) we can use the definition of partial derivatives and find

∂f

∂x
(0, 0) = lim

h→0

f(h, 0) − f(0, 0)
h

= lim
h→0

0
h

= 0

∂f

∂y
(0, 0) = lim

h→0

f(0, h) − f(0, 0)
h

= lim
h→0

0
h

= 0.

This shows that the partial derivatives ∂f
∂x

and ∂f
∂y

exist for every point in R2. Nonethe-
less, this function is not differentiable at the point (0, 0). Indeed, we have seen in
Example 2.9 that this function is not even continuous at the point (0, 0), so according
to part (i) of Theorem 3.1, it cannot be differentiable at that point. This example
illustrates that even if a function is differentiable in every coordinate, this does not
mean that it is differentiable. In conclusion, the function f is of class C1(R2\{(0, 0)}).

3.6 Second Order Partial Derivatives

The partial derivatives ∂f
∂x1
, . . . , ∂f

∂xn
are also referred to as “partial derivatives of order

1” or “first order partial derivatives”. Let us now define the second order partial
derivatives.

Definition 3.8 (Partial derivatives of second order). Let E ⊆ Rn be an open set and
1 ⩽ k ⩽ n. Assume f : E → R is a function whose partial derivative ∂f

∂xk
exists for

every point in E. For 1 ⩽ i ⩽ n, if the partial derivative of ∂f
∂xk

with respect to the
variable xi at the point a exists, then we obtain a second order partial derivative of f
with respect to xi and xk at a denoted by ∂2f

∂xi∂xk
(a). If this derivative exists for every

a ∈ E, it defines a function ∂2f
∂xi∂xk

: E → R.

If i = k, then it is also common to write ∂2f
∂x2

i
instead of ∂2f

∂xi∂xi
. If i ̸= k, then there

are generally two mixed second-order partial derivatives:

∂2f

∂xi∂xk

and ∂2f

∂xk∂xi

.

These derivatives are not necessarily equal since the order of differentiation can affect
the result. However, as the following theorem states, they are equal if an additional
continuity assumption is satisfied.

Theorem 3.3 (Schwarz’s theorem). Let E ⊆ Rn be open and let f : E → R be a
function defined on E. For any point a ∈ E and indices i, k ∈ {1, . . . , n}, suppose the
mixed partial derivatives ∂2f

∂xi∂xk
and ∂2f

∂xk∂xi
exist in E and are continuous at a. Then,

∂2f
∂xi∂xk

(a) = ∂2f
∂xk∂xi

(a).
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Definition 3.9. The n× n matrix

Hess(f)(a) =


∂2f

∂x1∂x1
(a) . . . ∂2f

∂xn∂x1
(a)

...
. . .

...
∂2f

∂x1∂xn
(a) . . . ∂2f

∂xn∂xn
(a)


is called the Hessian matrix of f at the point a, written Hess(f)(a).

If all the partial derivatives of order 2 exist and are continuous at a then by
Schwarz’s theorem the Hessian matrix is a symmetric matrix, i.e., Hess(f)(a) =
Hess(f)(a)T . In this case we can use the Hessian matrix to form the second order
expansion of a differentiable function, given by

f(x) =

quadratic approximation︷ ︸︸ ︷
linear approximation︷ ︸︸ ︷

f(a) + ∇f(a) · (x − a) + 1
2(x − a)T · Hess(f)(a) · (x − a) +

remainder︷ ︸︸ ︷
r2(x)︸ ︷︷ ︸

2nd-order expansion

(3.3)
where r2(x) is an “error” term satisfying limx→a

r2(x)
∥x−a∥2

2
= 0.

The quadratic approximation is a polynomial of degree 2 in n variables called the
Taylor polynomial of order 2 at the point a and it is usually denoted by P2(x, y).

Example 3.6. Let us find the Taylor polynomial of order 2 for the function f(x, y) =
sin(2x+ y) + 3 cos(x+ y) at the point (0, 0). Recall the formula for computing the
quadratic approximation of a function in two variables at the point (0, 0) is

P2(x, y) = f(0, 0) + ∇f(0, 0) ·
(
x
y

)
+ 1

2(x, y) · Hess (f)(0, 0) ·
(
x
y

)
.

To use this formula, we have to find the gradient vector and the Hessian matrix
first. We have

∇f(x, y) = (2 cos(2x+ y) − 3 sin(x+ y), cos(2x+ y) − 3 sin(x+ y))

which gives

∇f(0, 0) = (2, 1).

Moreover,

Hess(f)(x, y) =
(

−4 sin(2x+ y) − 3 cos(x+ y) −2 sin(2x+ y) − 3 cos(x+ y)
−2 sin(2x+ y) − 3 cos(x+ y) − sin(2x+ y) − 3 cos(x+ y)

)

and hence

Hess(f)(0, 0) =
(

−3 −3
−3 −3

)
.
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It follows that

P2(x, y) = 3 + (2, 1) ·
(
x
y

)
+ 1

2(x, y) ·
(

−3 −3
−3 −3

)
·
(
x
y

)

= 3 + 2x+ y − 3
2x

2 − 3xy − 3
2y

2.

This is a degree 2 polynomial in 2 variables.

3.7 Higher Order Partial Derivatives

Definition 3.10 (Partial derivatives of higher orders). Consider a function f : E → R
defined on an open set E ⊆ Rn. For a sequence of indices i1, . . . , ip with each ij ∈
{1, . . . , n} and for p ⩾ 3, assume that the (p − 1)-th order partial derivative of f ,
denoted as ∂p−1f

∂xi1 ...∂xip−1
, exists in E. Then, the p-th order partial derivative of f with

respect to these indices, if it exists, is given by:

∂pf

∂xip . . . ∂xi1

= ∂

∂xip

(
∂p−1f

∂xi1 . . . ∂xip−1

)
.

This derivative is denoted as ∂f
∂xip ...∂xi1

(a) for any point a ∈ E. If such a derivative
exists for every a ∈ E, it defines a function ∂pf

∂xip ...∂xi1
: E → R.

Example 3.7. Consider a function f : R2 −→ R defined by f(x, y) = x3y2. We
calculate its higher-order partial derivatives as follows:

∂f

∂x
(x, y) = 3x2y2,

∂2f

∂x2 (x, y) = ∂

∂x
(3x2y2) = 6xy2,

∂2f

∂y∂x
(x, y) = ∂

∂y
(3x2y2) = 6x2y,

∂3f

∂y∂x2 (x, y) = ∂

∂y
(6xy2) = 12xy,

∂3f

∂x3 (x, y) = ∂

∂x
(6xy2) = 6y2.

This illustrates the computation of first, second, and third-order partial derivatives for
a function of two variables.

Remark 3.4. Explicit computations also give ∂2f
∂x∂y

(x, y) = 6x2y = ∂2f
∂y∂x

(x, y) and
∂3f

∂x∂y∂x
(x, y) = 12xy = ∂3f

∂y∂x2 (x, y), demonstrating the symmetry in mixed partial
derivatives.
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3.8 Functions of class Cp

Definition 3.11 (Functions of class Cp). Let E be an open subset of Rn and p a
positive integer. A function f : E → R is said to be of class Cp(E) if all its partial
derivatives of order p exist and are continuous at every point in E.
A function f : E → R is said to be of class C∞(E) if, for every integer p > 0, it is of
class Cp(E).

Proposition 3.2. If f : E → R is a function of class Cp(E), then it is also of class
Ck(E) for all 0 < k ⩽ p.

Example 3.8. Consider the function f : R2 → R defined by f(x, y) = x sin(xy).
Then, for every (x, y) ∈ R2, we have:

∂f

∂x
(x, y) = sin(xy) + xy cos(xy),

∂f

∂y
(x, y) = x2 cos(xy),

∂2f

∂x2 (x, y) = 2y cos(xy) − xy2 sin(xy),

∂2f

∂x∂y
(x, y) = ∂2f

∂y∂x
(x, y) = 2x cos(xy) − x2y sin(xy),

∂2f

∂y2 (x, y) = −x3 sin(xy).

Figure 3.5: f(x, y) = x sin(xy)

The following is a corollary of Schwarz’s theorem.

Corollary 3.1. Let f : E → R be a function of class Cp(E) and let k be an integer
between 1 and p. If two ordered k-tuples (i1, · · · , ik) and (j1, · · · , jk) are equal up to
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a permutation, then, for any element a = (a1, . . . , an) of E, we have

∂kf

∂xi1 · · · ∂xik

(a1, · · · , an) = ∂kf

∂xj1 · · · ∂xjk

(a1, · · · , an).

3.9 Taylor’s Theorem for Multivariable Functions
The following is a special (but often very useful) case of Taylor’s theorem for multi-
variate functions.

Theorem 3.4 (Taylor’s Formula – special case). Let E ⊆ Rn be open and f : E → R
a function of class Cp+1(E). Then for every a ∈ E there exists a real number δ > 0
such that B(a, 2δ) ⊆ E and, for every element x ∈ B(a, δ), one can associate a number
0 < θ < 1 so that the following equality (known as Taylor’s formula) holds:

f(x) = F (0) + F ′(0) + . . .+ F (p)(0) 1
p! + F (p+1)(θ) 1

(p+ 1)! ,

where F : (−2, 2) → R is the function defined by F (t) = f(a + t(x − a)).

To state Taylor’s theorem for multivariate functions in full generality, we first
need to introduce the multi-index notation. Given an n-tuple of non-negative integers
α = (α1, . . . , αn) and a point x ∈ Rn, let

|α| = α1 + . . .+ αn, α! = α1! · · ·αn!, xα = xα1
1 · · ·xαn

n .

(Recall that by convention 0! = 1.) For example, if n = 3 and α = (1, 0, 4) then
we have |α| = 1 + 0 + 4 = 5, and α! = 1! · 0! · 4! = 24, and (x1, x2, x3)α = x1x

4
3.

Given a function f : E → R of class Ck(E) and an n-tuple of non-negative integers
α = (α1, . . . , αn) with |α| ⩽ k then we write

Dαf = ∂|α|f

∂xα1
1 · · · ∂xαn

n

.

Since f is of class Ck(E), all its k-th order partial derivatives exist and are continuous
and, by Schwarz’s theorem, one can change the order of mixed derivatives. This ensures
that as long as |α| ⩽ k the above notation is well-defined and unambiguous.

Theorem 3.5 (Multivariate version of Taylor’s theorem). Let k ∈ N. Suppose E ⊆
Rn is open and f : E → R is a function of class Ck(E). Then

f(x) =

kth-order approximation︷ ︸︸ ︷∑
|α|⩽k

Dαf(a)
α! (x − a)α +

remainder︷ ︸︸ ︷
rk(x)

︸ ︷︷ ︸
kth-order expansion

(3.4)

where the sum is taken over all n-tuples of non-negative integers α = (α1, . . . , αn)
with |α| ⩽ k and rk(x) is an “error” term satisfying limx→a

rk(x)
∥x−a∥k

2
= 0.
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Note that if k = 1 then formula (3.4) is the same as (3.2) and if k = 2 then formula
(3.4) is the same as (3.3).
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